Eigenkapital *.

Burkhard Erke

Donnerstag, April 3, 2008

*Die Folien orientieren sich an Jian Wang (MIT)

Überblick/Lernziele

- "Dividend Discount Model" (DDM)
- Annahmen bzgl. des zukünftigen Cash Flows
- EPS (Gewinn pro Aktie) und P/E (KGV)
- "Growth Opportunities" und Wachstumsaktien

Beispiele

Beispiel 1. Bewertung von Einzelaktien. Wie viel würden Sie für eine Aktie von Duke Energy und Anheuser Busch bezahlen, wenn Sie die folgenden Informationen besitzen?

- Duke Energy: Liefert Elektrizität an 1,8
 Millionen Kunden in North und South Carolina. Außerdem vertreibt die Firma ca.
 12% des in den USA verbrauchten Erdgases.
 20.000 Beschäftigte und 130.683 Aktionäre.
 Quelle: Value Line.
- Anheuser Busch: Größte Brauerei der Welt und einer der größten Betreiber von "theme parks" in den USA. Außerdem an 2. Stelle bei der Herstellung von "aluminum beverage containers". Marken: Budweiser, Michelob, and Busch. 24.125 Beschäftigte und 64.120 Aktionäre. Quelle: Value Line.

• Informationen über die Dividenden:

Unternehmen	t=0	t=1	Ø 2 Jahre	
	Dividende	Dividende	Dividenden-	
			wachstum	
Duke Energy	2.20	2.29	4.0%	
Anheuser Busch	1.04	1.13	8.4%	

• Informationen bzgl. Zinsen und Risikoprämien

Langfr. Zinssatz	6.0%	
Risikoprämie Markt	5.0%	

• Anpassung Marktprämie

Duke Energy	-1.50%
Anheuser Busch	-0.75%

Beispiel 2. Wachstumsaktien. Texas Western (TW) wird im nächsten Jahr voraussichtlich \$1,00 pro Aktie verdienen. Der Buchwert pro Aktie ist aktuell \$10,00. TW plant ein Investitiionsprogramm, das den Buchwert der Assets netto um 8% pro Jahr steigern wird. Gewinne werden proportional mitwachsen. Die Finanzierung wird durch einbehaltene Gewinne sichergestellt. Der Diskontierungssatz im Unternehmen ist 10% - das ist auch die Rendite der neuen Investitionsprojekte. Wie teuer ist eine Aktie von TW, wenn

- 1. das Unternehmen für immer mit 8% wächst?
- 2. wenn das Wachstum nach 5 Jahren auf 4% fällt?

Aktienmarkt: Einführung

Definition: Eigenkapital wird von Eigentümern zur Verfügung gestellt. Aktien verkörpern deshalb folgende Rechte:

- Teilnahme an der Hauptversammlung und (in der Grundform der Stammaktie) Stimmrecht
- Gewinnanspruch ("residual claim" erst kommen die Kreditgeber und ...)
- Anspruch auf Anteil am Liquidationserlös
- Bezugsrecht auf junge Aktien
- Anspruch auf Informationen vom Vorstand

 Im Gegensatz zu den Zahlungen, die an Kreditgeber gehen, sind die Zahlungen an Aktionäre unsicher. Und zwar hinsichtlich des Zeitpunktes und hinsichtlich der Höhe.

Organisation des Aktienmarktes

- 1. Primärmarkt underwriting
 - Venture capital: Unternehmen beteiligt (verkauft Aktien im Rahmen einer Privatplazierung) an "specialist investment partnerships", "investment institutions"
 - "Initial public offering" (IPO): Öffentlicher Erstabsatz neuer Aktien an Börsen ("going public").
 - "Secondary offerings": Öffentlicher Absatz zusätzlicher Aktien an Börsen.
 - Aktienemission wird typischerweise von Bankenkonsortium (underwriter)

durchgeführt: (Übernahme)Konsortium übernimmt das Emissionsrisiko. Kauft die gesamte Emission zum Festpreis und verkauft sie dann weiter.

- 2. Sekundärmarkt ("Resale market")
 - Präsenzbörse (Parketthandel und Computerbörse (OTC)
 - Präsenzbörse: NYSE, AMEX, Frankfurt etc.
 - Computerbörse: NASDAQ

"Dividend Discount Model"

Grundform der DCF-Formel wird zur Bewertung von Aktien verwendet. Notwendige Information:

- 1. Erwartete zukünftige Dividenden
- 2. Diskontierungssatz für Dividenden.

Notation:

 P_t : Aktienkurs in t (ex-dividend)

 D_t : Dividende in t

 $E_t[\cdot]$: Erwartung (Prognose) in t

 r_t : Riskoadjustierter Diskontierungssatz für Zahlungen in t.

Dividend Discount Model (DDM)

DDM: Aktienkurs entspricht dem Barwert aller zukünftiger Dividenden.

Anwendung der DCF-Formel führt zum "Dividend Discount Model":

$$P_0 = \sum_{t=1}^{\infty} \frac{E_0[D_t]}{(1+r_t)^t} \tag{1}$$

Annahme: Keine Spekulationsblasen ("bubbles").

(Definition Spekulationsblase später.)

Zusätzliche Annahme: $r_t = r$ - die erwartete Rendite ist für alle Zeithorizonte identisch.

$$P_0 = \sum_{t=1}^{\infty} \frac{E_0[D_t]}{(1+r)^t}$$
 (2)

Bewertung über endliche Perioden

- 1. Aktienkurs in t = 0 repräsentiert:
 - Dividendenzahlung in t = 1: D_1
 - Aktienkurs ex Dividende in t = 1: P_1

$$P_0 = \frac{E_0[D_1]}{(1+r)} + \frac{E_0[P_1]}{(1+r)} \tag{3}$$

2. Wie wird P_1 bestimmt?

$$P_1 = \frac{E_1[D_2]}{(1+r)} + \frac{E_1[P_2]}{(1+r)} \tag{4}$$

3. Aus heutiger Sicht kann jede Prognose der morgigen Prognose nur der Prognose heute entsprechen:

$$E_0[E_1[\cdot]] = E_0[\cdot]. \tag{5}$$

 Prognosen ändern sich nur, wenn es unerwartete (überraschende) Änderungen gibt.

$$E_1[\cdot] - E_0[\cdot] =$$
Überraschungen nach $t = 0$ (6)

• Unterwartete Änderungen können nicht prognostiziert werden.

$$E_0[E_1[\cdot] - E_0[\cdot]] = E_0[\ddot{\mathsf{U}}\mathsf{berraschungen}] = 0$$

$$(7)$$

$$\Rightarrow E_0[E_1[\cdot]] = E_0[\cdot]$$

4. Somit

$$P_{0} = \frac{E_{0}[D_{1}]}{(1+r)} + \frac{1}{1+r} \left(\frac{E_{0}[D_{2}] + E_{0}[P_{2}]}{1+r} \right)$$

$$= \frac{E_{0}[D_{1}]}{(1+r)} + \frac{E_{0}[D_{2}]}{(1+r)^{2}} + \frac{E_{0}[P_{2}]}{(1+r)^{2}}$$

$$= \frac{E_{0}[D_{1}]}{(1+r)} + \frac{E_{0}[D_{2}]}{(1+r)^{2}} + \frac{E_{0}[D_{3}]}{(1+r)^{3}} + \frac{E_{0}[P_{3}]}{(1+r)^{3}}$$

$$= \sum_{t=1}^{\infty} \frac{E_{0}[D_{t}]}{(1+r)^{t}} + \lim_{T \to \infty} \frac{E_{0}[D_{T}]}{(1+r)^{T}}$$

$$= \sum_{t=1}^{\infty} \frac{E_{0}[D_{t}]}{(1+r)^{t}} \text{ if } \lim_{T \to \infty} \frac{E_{0}[D_{T}]}{(1+r)^{T}} = 0$$

Es gibt eine "no-bubble"-Bedingung:

$$\lim_{T\to\infty}\frac{E_0[D_T]}{(1+r)^T}=0$$

Beobachtung: DDM verlangt nicht, dass eine Aktie für alle Zeiten gehalten werden muss.

Anwendung des DDM verlangt Annahmen bezüglich

- 1. Zukünftige Dividenden
- 2. Discountierungssätze.

Konzentration auf (1)

Annahmen bzgl. Cash Flows

DDM mit konstantem Wachstum

Angenommen, die Dividenden wachsen mit der Wachstumsrate g bis in alle Ewigkeit. Das heißt:

$$E_0[D_{t+1}] = (1+g) \times E_0[D_t]. \tag{8}$$

Dann

$$P_{0} = \sum_{t=1}^{\infty} \frac{E_{0}[D_{t}]}{(1+r)^{t}} = \sum_{t=1}^{\infty} \frac{(1+g)^{t-1}}{(1+r)^{t}} E_{0}[D_{1}]$$

$$= \frac{E_{0}[D_{1}]}{r-g} \text{ if } r > g$$

Schließlich, $E_0[D_1] = (1+g)D_0$, mit D_0 der aktuellen Dividende.

Damit haben wir das "Gordon Model":

$$\frac{E_0[D_1]}{r-g} = \frac{1+g}{r-g}D_0$$
 (9)

Beispiel 1. Dividend werden mit 6% pro Jahr wachsen und die aktuelle Dividende ist \$1 pro Aktie. Die geforderte Rendite is 20%. Der aktuelle Aktienkurs sollte sein:

$$P_0 = \frac{1.06}{0.2 - 0.06} \times 1 = $7.57.$$

⇒ DDM mit kontanten Wachstumsraten gibt eine Beziehung zwischen dem aktuellen Aktienkurs, den aktuellen Dividenden, der Dividendenwachstumsrate und der geforderten Rendite. Wenn drei Variablen bekannt sind, kann die vierte berechnet werden.

Beispiel. Bestimmen Sie die Eigenkapitalkosten (cost of equity = Diskontierungssatz). 09/92 war die Dividendenrendite von Duke Power $D_0/P_0 = 0.052$. Schätzung der langfristigen

Wachstumsrate:

Info Source	Value Line (VL)	I/B/E/S	
Growth g	0.049	0.041	

Die Eigenkapitalkosten sind dann

$$r = \frac{(1+g)D_0}{P_0} + g$$

Somit,

	Eigenkapitalkosten
VL	r = (0.052)(1.049) + 0.049 = 10.35%
IBES	r = (0.052)(1.041) + 0.041 = 9.51%

Beispiel. Schätzen Sie die Dividendenwachstumsrate. WSJ berichtete folgende Daten über die Aktie von AT&T:

<u>Frage</u>. Dividendenwachstumsrate gemäß Aktienmarkt wenn r = 12%?

Lösung der Bewertungsformel nach g gibt

$$g = \frac{r - \frac{D_0}{P_0}}{1 + \frac{D_0}{P_0}}$$

Da

$$P_0 = (38.5 + 38.125)/2 = 38.3125$$

$$D_0/P_0 = 1.32/38.3125 = 0.03445$$

ergibt sich

$$g = \frac{0.12 - 0.03445}{1.03445} = 8.27\%.$$

DDM mehrstufigem Wachstum

Unternehmen durchlaufen mehrere Wachstumsstadien im Lebenszyklus. Beispiel:

- "Growth stage" hohes Umsatzwachstum, hohe Gewinnmargen und ungewöhnlich hohes Wachstum der "earnings per share".
 Es gibt viele neue Investitionsmöglichkeiten, geringe Dividendenausschüttung
- Transition stage" Wachstumsrate und Gewinnmarge gehen aufgrund der zunehmenden Konkurrenz zurück. Weniger profitable Investitionsmöglichkeiten, hohe Dividendenausschüttung.
- 3. "Maturity stage" Gewinnwachstum, Ausschüttu und Gewinnmargen stabilisierien sich.

Beispiel. Beispiel 1 mit $D_0 = \$1$ und r = 20%. Angenomme, die Wachstumsrate ist 6% für die ersten 7 Jahre und fällt dann auf null.

$$P_0 = \$6.045$$

EPS AND P/E

Prakitsche Probleme der Dividendenprognose. Terminologie:

- Gewinn = Nettoerträge
- Ausschüttungsquote = Dividend/Gewinne= DPS/EPS = p
- Einbehaltene Gewinne = (Gewinn Dividenden)

- Einbehaltungsquote:
 Einbehaltene Gewinne/Gewinne = b
- Buchwert (BV) = Bilanziertes Eigenkapital
- Eigenkapitalrendite (ROE): Gewinne/BV.

Beispiel. (Myers) Texas Western (TW) erwartete für das nächste Jahr einen GEwinn pro Aktie von \$1,00. Der Buchwert pro Aktie ist \$10,00. TW plant ein Investitionsprogramm, das den Buchwert der Assets jedes Jahr um 8% steigern soll. Es wird erwartet, dass die Gewinne proportional mitwachsen. Die Finanzierung erfolgt durch einbehaltene Gewinne. Der Kapitalkostensatz ist 10%. Bewerten Sie den Aktienkurs von TW für folgende Annahmen:

1. TW wächst für immer mit 8% forever

2. TW wächst nach 5 Jahren nur noch mit 4%.

Hier gilt:

- Einbehaltungsquote b = (10)(0.08)/(1)= 0.8
- Ausschüttungsquote p = (1 0.8)/(1) = 0.2
- ROE = 10% .
- 1. Kontinuierliche Expansion.

$$g = ROE \times b = (0.10)(0.8) = 0.08$$
 $D_1 = EPS_1 \times p = (1)(0.2) = 0.2.$
 $P_0 = \frac{D_1}{r - g} = \frac{0.2}{0.10 - 0.08}$

2. 2-stufige Expansion. Prognose EPS, D, BVPS Jahr für Jahr

Jahr	О	1	4	3	4	5	6
EPS		1.00	1.08	1.17	1.26	1.36	1.47
Investition		0.80	0.86	0.94	1.00	1.08	0.59
Dividende		0.20	0.22	0.23	0.26	0.28	0.88
BVPS	10.00	10.80	11.66	12.60	13.60	14.69	15.28

$$P_0 = \sum_{t=1}^{5} \frac{D_t}{1.1^t} + \frac{1}{1.1^5} \frac{0.88}{0.1 - 0 - 04} = \$10$$

<u>Frage:</u> Warum ist der Aktienkurs in beiden Szenarios identisch?

Wachstumsmöglichkeiten und Wachstumsaktien

<u>Definition:</u> Wachstumsmöglichkeiten ("growth opportunities") sind Investitions- möglichkeiten deren Rendite über der verlangten Mindestrendite (Opportunitätskosten) liegt.

<u>Definition:</u> Aktien von Unternehmen mit Zugang zu derartigen Investitions- möglichkeiten sind Wachstumsaktien ("growth stocks")

Beispiel. IBM in den 1960ern und 1970ern.

Beachten Sie: Die folgenden Aktien sind **keine** Wachstumsaktien:

- Aktie mit hohem Wachstum des EPS
- Aktie mit hohem Wachstum der Dividenden
- Aktie eines Unternehmens, dessen Assets steigen.

Beispiel. Wachstumsaktie. ABC Software mit folgenden Daten: Erwartetes EPS nächstes Jahr 8.33; Ausschüttungsquote 0.6; ROE 25%; und, Eigenkapitalkosten r = 15%.

Somit,

$$D_1 = p \times EPS = (0.6)(8.33) = $5.00$$

 $g = b \times ROE = (0.4)(0.25) = 0.10.$

• Strategie "no-growth" (g = 0 & p = 1), Kurs ist

$$P_0 = \frac{D_1}{r - g} = \frac{EPS_1}{r} = \frac{8.33}{0.15} = \$55.56$$

Strategie "growth" Kurs ist

$$P_0 = \frac{D_1}{r - g} = \frac{5.00}{0.15 - 0.10} = \$100.00$$

 Unterschied von 100 - 55.56 = \$44.44 erklärt durch "growth opportunities", die eine Rendite von 25%, verglichen mit der verlangten Rendite von 15% liefern.

At t = 1: ABC kann investieren: (0.4)(8.33)= \$3.33 mit Rendite 25%. Investition generiert Cash Flow in Höhe von (0.25)(3.33)= \$0.83 pro Jahr beginnend in t = 2. Der Kapitalwert KW in t = 1 ist

$$KW_1 = -3.33 + \frac{0.83}{0.15} = \$2.22.$$

At t=2: Alles bleibt so. ABC wird jetzt 3.67 investieren. Mehr als in t=1 (Wachstumsrate = 10%). Die Investition wird durchgeführt mit dem Kapitalwert

$$KW_2 = (2.22) \times (1.1) = $2.44$$

. . .

Der Barwert der Wachstumsmöglichkeiten ("growth opportunities" (PVGO)) ist

$$PVGO = \frac{KW_1}{r - g} = \frac{2.22}{0.15 - 0.10} = $44.44$$

Hieraus erklärt sich der Kursunterschied!

Aktienkurs mit 2 Komponenten:

- Barwert der Gewinne unter der Annahme: "no-growth"
- 2. "Present value of growth opportunities"

$$P_0 = \frac{EPS_1}{r} + PVGO.$$

Terminologie:

- Earnings yield: $E/P = EPS_1/P_0$
- KGV: $P/E = P_0/EPS_1$

Hinweis: In Zeitungen, werden KGVs in aller Regel auf der Basis aktueller Gewinne angegeben. Anleger sind aber an KGVs auf der Basis zukünftiger Gewinne interessiert. • Falls PVGO = 0, KGV entspricht 1 / Kapitalkosten

$$KGV = \frac{1}{r}.$$

• Falls PVGO > 0, KGV ratio becomes higher:

$$KGV = \frac{1}{r} + \frac{PVGO}{EPS_1} > \frac{1}{r}$$

 PVGO ist nur positiv für Unternehmen, deren Rendite die Kapitalkosten übersteigt.

Zusammenfassung

- Riskante CFs sollten mit einem risikoadjustierten Kapitalkostensatz diskontiert werden.
- Annahme des DDM mit konstantem Diskontierungssatz (=Kapitalkostensatz):
 - 1. "No bubbles"
 - 2. Konstanter Kapitalkostensatz